Generator

Generator adalah suatu sistem yang menghasilkan tenaga listrik dengan masukan tenaga mekanik. Jadi disini generator berfungsi untuk mengubah tenaga mekanik menjadi tenaga listrik yang mempunyai prinsip kerja sebagai berikut:

“Bilamana rotor diputar maka belitan kawatnya akan memotong gaya-gaya magnit pada kutub magnit, sehingga terjadi perbedaan tegangan, dengan dasar inilah timbullah arus listrik, arus melalui kabel/kawat yang ke dua ujungnya dihubungkan dengan cincin geser. Pada cincin-cincin tersebut menggeser sikat-sikat, sebagai terminal penghubung keluar.“

Bagian-bagian generator :
1. Rotor, adalah bagian yang berputar yang mempunyai bagian terdiri dari poros, inti, kumparan, cincin geser, dan sikat-sikat.
2. Stator, adalah bagian yang tak berputar (diam) yang mempunyai bagian terdiri dari rangka stator yang merupakan salah satu bagian utama dari generator yang terbuat dari besi tuang dan ini merupakan rumah dari semua bagian-bagian generator, kutub utama beserta belitannya, kutub-kutub pembantu beserta belitannya, bantalan-bantalan poros.

Macam Generator
Berdasarkan tegangan yang dibangkitkan generator dibagi menjadi 2 yaitu :
1. Generator Arus Bolak-Balik (AC)
Generator arus bolak-balik yaitu generator dimana tegangan yang dihasilkan (tegangan output) berupa tegangan bolak-balik.
2. Generator Arus Searah (DC)
Generator arus searah yaitu generator dimana tegangan yang dihasilkan (tegangan output) berupa tegangan searah, karena didalamnya terdapat sistem penyearahan yang dilakukan bisa berupa oleh komutator atau menggunakan dioda.

 

  1. GENERATOR DC

Gambar rangkaian Generator DC

Generator DC merupakan sebuah perangkat Motor listrik yang mengubah energi mekanis menjadi energi listrik. Generator DC menghasilkan arus DC / arus searah. Generator DC dibedakan menjadi beberapa jenis berdasarkan dari rangkaian belitan magnet atau penguat eksitasinya terhadap jangkar (anker), jenis generator DC yaitu:

1. Generator penguat terpisah

Pada generator penguat terpisah, belitan eksitasi (penguat eksitasi) tidak terhubung menjadi satu dengan rotor. Terdapat dua jenis generator penguat terpisah, yaitu:
>Penguat elektromagnetik (Gambar a)
>Magnet permanent / magnet tetap (Gambar b )

[gb+8.+Penguat+Terpisah.jpg]
2. Generator shunt

[gb+10.+shunt.jpg]

Pada generator shunt, penguat eksitasi E1-E2 terhubung paralel dengan rotor (A1-A2). Tegangan awal generator diperoleh dari magnet sisa yang terdapat pada medan magnet stator. Rotor berputar dalam medan magnet yang lemah, dihasilkan tegangan yang akan memperkuat medan magnet stator, sampai dicapai tegangan nominalnya. Pengaturan arus eksitasi yang melewati belitan shunt E1-E2 diatur oleh tahanan geser. Makin besar arus eksitasi shunt, makin besar medan penguat shunt yang dihasilkan, dan tegangan terminal meningkat sampai mencapai tegangan nominalnya.

Jika generator shunt tidak mendapatkan arus eksitasi, maka sisa megnetisasi tidak akan ada, atau jika belitan eksitasi salah sambung atau jika arah putaran terbalik, atau rotor terhubung-singkat, maka tidak akan ada tegangan atau energi listrik yang dihasilkan oleh generator tersebut.


3. Generator kompon

Generator kompon mempunyai dua penguat eksitasi pada inti kutub utama yang sama. Satu penguat eksitasi merupakan penguat shunt, dan lainnya merupakan penguat seri.

[gb+12.+Gen+Kompon.jpg]

 

Konstruksi Generator DC

Pada umumnya generator DC dibuat dengan menggunakan magnet permanent dengan 4-kutub rotor, regulator tegangan digital, proteksi terhadap beban lebih, starter eksitasi, penyearah, bearing dan rumah generator atau casis, serta bagian rotor. Gambar berikut menunjukkan gambar potongan melintang konstruksi generator DC.

Konstruksi Generator DC

Generator DC terdiri dua bagian, yaitu stator, yaitu bagian mesin DC yang diam, dan bagian rotor, yaitu bagian mesin DC yang berputar. Bagian stator terdiri dari: rangka motor, belitan stator, sikat arang, bearing dan terminal box. Sedangkan bagian rotor terdiri dari: komutator, belitan rotor, kipas rotor dan poros rotor.

Bagian yang harus menjadi perhatian untuk perawatan secara rutin adalah sikat arang yang akan memendek dan harus diganti secara periodic / berkala. Komutator harus dibersihkan dari kotoran sisa sikat arang yang menempel dan serbuk arang yang mengisi celah-celah komutator, gunakan amplas halus untuk membersihkan noda bekas sikat arang.

 

Prinsip kerja Generator DC

Pembangkitan tegangan induksi oleh sebuah generator diperoleh melalui dua cara:

  • dengan menggunakan cincin-seret, menghasilkan tegangan induksi bolak-balik.
  • dengan menggunakan komutator, menghasilkan tegangan DC.

Proses pembangkitan tegangan tegangan induksi tersebut dapat dilihat pada Gambar 2 dan Gambar 3:

Gbr2. Pembangkitan Tegangan Induksi

Jika rotor diputar dalam pengaruh medan magnet, maka akan terjadi perpotongan medan magnet oleh lilitan kawat pada rotor. Hal ini akan menimbulkan tegangan induksi. Tegangan induksi terbesar terjadi saat rotor menempati posisi seperti Gambar 2 (a) dan (c). Pada posisi ini terjadi perpotongan medan magnet secara maksimum oleh penghantar. Sedangkan posisi jangkar pada Gambar 2.(b), akan menghasilkan tegangan induksi nol. Hal ini karena tidak adanya perpotongan medan magnet dengan penghantar pada jangkar atau rotor. Daerah medan ini disebut daerah netral.

Gbr3.Tegangan Rotor yang dihasilkan melalui cincin-seret dan komutator

Jika ujung belitan rotor dihubungkan dengan slip-ring berupa dua cincin (disebut juga dengan cincin seret), seperti ditunjukkan Gambar 3.(1), maka dihasilkan listrik AC (arus bolak-balik) berbentuk sinusoidal. Bila ujung belitan rotor dihubungkan dengan komutator satu cincin Gambar 3.(2) dengan dua belahan, maka dihasilkan listrik DC dengan dua gelombang positif.

  • Rotor dari generator DC akan menghasilkan tegangan induksi bolak-balik. Sebuah komutator berfungsi sebagai penyearah tegangan AC.
  • Besarnya tegangan yang dihasilkan oleh sebuah generator DC, sebanding dengan banyaknya putaran dan besarnya arus eksitasi (arus penguat medan).

 

2. GENERATOR SINKRON (AC)

Pada dasarnya konstruksi dari generator sinkron adalah sama dengan konstruksi motor sinkron, dan secara umum biasa disebut mesin sinkron. Dikatakan generator sinkron karena jumlah putaran rotornya sama dengan jumlah putaran medan magnet pada stator. Ada dua struktur kumparan pada mesin sinkron yang merupakan dasar kerja dari mesin tersebut, yaitu kumparan yang mengalirkan penguatan DC (membangkitkan medan magnet, biasa disebut sistem eksitasi) dan sebuah kumparan (biasa disebut jangkar) tempat dibangkitkannya GGL arus bola-balik.

Hampir semua mesin sinkron mempunyai belitan GGL berupa stator yang diam dan struktur medan magnit berputar sebagai rotor. Kumparan DC pada struktur medan yang berputar dihubungkan pada sumber DC luar melaui slipring dan sikat arang, tetapi ada juga yang tidak mempergunakan sikat arang yaitu sistem “brushless excitation”.

Rangkaian Ekivalen Generator AC

Berdasarkan sistem pembangkitannya generator AC dapat dibagi menjadi 2 yaitu :
1. Generator 1 fasa
Generator yang dimana dalam sistem melilitnya hanya terdiri dari satu kumpulan kumparan yang hanya dilukiskan dengan satu garis dan dalam hal ini tidak diperhatikan banyaknya lilitan. Ujung kumparan atau fasa yang satu dijelaskan dengan huruf besar X dan ujung yang satu lagi dengan huruf U.
2. Generator 3 fasa
Generator yang dimana dalam sistem melilitnya terdiri dari tiga kumpulan kumparan yang mana kumparan tersebut masing-masing dinamakan lilitan fasa. Jadi pada statornya ada lilitan fasa yang ke satu ujungnya diberi tanda U – X; lilitan fasa yang ke dua ujungnya diberi tanda dengan huruf V – Y dan akhirnya ujung lilitan fasa yang ke tiga diberi tanda dengan huruf W – Z.

Konstruksi Generator Arus Bolak-balik

Konstruksi generator arus bolak-balik ini terdiri dari dua bagian utama, yaitu (1) stator, yakni bagian diam yang mengeluarkan tegangan bolakbalik, dan (2) rotor, yakni bagian bergerak yang menghasilkan medan magnit yang menginduksikan ke stator. Stator terdiri dari badan generator yang terbuat dari baja yang berfungsi melindungi bagian dalam generator, kotak terminal dan name plate pada generator. Inti Stator yang terbuat dari bahan ferromagnetik yang berlapis-lapis dan terdapat alur-alur tempat meletakkan lilitan stator. Lilitan stator yang merupakan tempat untuk menghasilkan tegangan. Sedangkan, rotor berbentuk kutub sepatu (salient) atau kutub dengan celah udara sama rata (rotor silinder).

Prinsip Kerja Generator AC

Prinsip dasar generator arus bolak-balik menggunakan hukum Faraday yang menyatakan jika sebatang penghantar berada pada medan magnet yang berubah-ubah, maka pada penghantar tersebut akan terbentuk gaya gerak listrik. Prinsip generator ini secara sederhana dapat dijelaskan bahwa tegangan akan diinduksikan pada konduktor apabila konduktor tersebut bergerak pada medan magnet sehingga memotong garis-garis gaya. Hukum tangan kanan berlaku pada generator dimana menyebutkan bahwa terdapat hubungan antara penghantar bergerak, arah medan magnet, dan arah resultan dari aliran arus yang terinduksi. Apabila ibu jari menunjukkan arah gerakan penghantar, telunjuk menunjukkan arah fluks, jari tengah menunjukkan arah aliran elektron yang terinduksi. Hukum ini juga berlaku apabila magnet sebagai pengganti penghantar yang digerakkan.

Terdapat dua jenis konstruksi dari generator ac, jenis medan diam atau medan magnet dibuat diam dan medan magnet berputar.

Besar tegangan generator bergantung pada :

  1. Kecepatan putaran (N)
  2. Jumlah kawat pada kumparan yang memotong fluk (Z)
  3. Banyaknya fluk magnet yang dibangkitkan oleh medan magnet (f)
  4. Konstruksi Generator

Eksitasi Generator AC Sistem eksitasi secara konvensional dari sebuah generator arus bolak-balik terdiri atas sumber arus searah yang dihubungkan ke medan generator ac melalui cincin-slip dan sikat-sikat. Sumber dc biasanya diperoleh dari generator arus searah yang digerakkan dengan motor atau penggerak mula yang sama dengan penggerak mula generator bolak-balik. Setelah datangnya zat padat, beberapa sistem eksitasi yang berbeda telah dikembangkan dan digunakan. Salah satunya adalah daya diambil dari terminal generator ac, diubah ke daya dc oleh penyearah zat padat dan kemudian dicatu ke medan generator ac dengan menggunakan cincin-slip konvensional dan sikat-sikat. Dalam sistem serupa yang digunakan oleh generator dengan kapasitas daya yang lebih besar, daya dicatukan ke penyearah zat padat dari lilitan tiga fase terpisah yang terletak diatas alur stator generator. Satu-satunya fungsi dari lilitan ini adalah menyediakan daya eksitasi untuk generator. Sistem pembangkitan lain yang masih digunakan baik dengan generator sinkron tipe kutub-sepatu maupun tipe rotor-silinder adalah sistem tanpa sikat-sikat, yang mana generator ac kecil dipasang pada poros yang sama sebagai generator utama yang digunakan untuk pengeksitasi. Pengeksitasi ac mempunyai jangkar yang berputar, keluarannya kemudian disearahkan oleh penyearah dioda silikon yang juga dipasang pada poros utama. Keluaran yang telah disearahkan dari pengeksitasi ac, diberikan langsung dengan hubungan yang diisolasi sepanjang poros ke medan generator sinkron yang berputar. Medan dari pengeksitasi ac adalah stasioner dan dicatu dari sumber dc terpisah. Berarti tegangan yang dibangkitkan oleh generator sinkron dapat dikendalikan dengan mengubah kekuatan medan pengeksitasi ac. Jadi sistem pengeksitasi tanpa sikat tidak menggunakan komutator yang akan memperbaiki keandalan dan menyederhanakan pemeliharaan umum.